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A theory of macroscopic systems which takes as independent variables the slow 
(conserved) ones plus the fast dissipative fluxes is carefully analyzed at three 
levels of description: macroscopic (thermodynamic), microscopic (projection 
operators) and mesoscopic (fluctuation theory). Such a description is compared 
with the memory function approach based only on the conserved variables. We 
find that the first theory is richer and wider than the second one, and some 
misunderstandings in this connection are clarified and discussed. 
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1. INTRODUCTION 

While l inear irreversible the rmodynamics  (LIT)  has been undeniably  useful 
for the analysis  of  many  phenomena in nonequil ibr ium macroscopic  systems, 
and in spite that  it is a consistent  an elegant formalism, it presents some very 
well-known limitations.  The first one is that  in LIT the response of  the 
system is instantaneous;  in fact, the systems have a certain inert ia which 
produces a delay or re tardat ion in their response to any driving force. The 
drast ic  simplif icat ion implied by the ignorance of  such effects renders LIT 
inappl icable  to high frequency phenomena.  On the other side, LIT neglects 
nonlinear terms in the constitutive equations.  This is known to be an 
excessive simplif icat ion from the experimental  point  of  view. 

The usual way to avoid the first l imitat ion of  LIT has been to restore to 
the memory  function formalism, direct ly confirmed from a microscopic  basis 
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in the framework of linear-response theory. In this formalism the system is 
described locally by the conserved variables, whose evolution equations 
(conservation equations) are completed by constitutive equations for the 
fluxes with memory functions instead of simple phenomenological coef- 
ficients. 

Recently, a phenomenological framework has been proposed, which 
includes in the set of independent variables the dissipative fluxes. The 
macroscopic version of this formalism constitutes what is called extended 
irreversible thermodynamics (EIT). In this theory, the evolution equations of 
the fluxes play the role of constitutive equations of the system. If a 
contraction of this level of description is carried out, by projecting the results 
onto the space of the conserved variables, the results of the memory function 
approach are recovered, with the additional advantage that the fast fluc- 
tuations of the fluxes provide in an immediate way the stochastic noise 
appearing in the stochastic version of the memory functions approach. 

The underlying idea behind the attempts to describe situations which do 
not fit into the scheme of classical LIT is therefore to enlarge the space of 
state variables required to describe the system. For the sake of simplicity and 
because the basic physics involved is essentially the same for more 
complicated systems, we will consider as a prototype the case of a simple 
monoatomic fluid. In this case, one adds to the five conserved densities 
(local mean density p(r, t), local hydrodynamic velocity u(r, t) and local 
energy density e(r, t), the dissipative fluxes (heat flux q, scalar viscous 
pressure r, and viscous pressure tensor ~, which is assumed to be a 
symmetric traceless tensor). 

These lines of thought go back to Maxwell, (1) who in 1897 realized that 
in a viscous body the state of stress will disappear at a rate which depends 
on the value of the state of stress and on the nature of the body. In the 
language of LIT this implies that the Navier-Newton constitutive equation is 
no longer valid, but must be substituted by a relaxation equation of the type 

d~ 1 
[~ + 2t/(grad u) s + .. .] (1.1) 

dt 02 

where 02 is the relaxation time measuring the way in which ~ gradually 
disappears. 

Later on it was realized that equations of this type are very useful for 
solving the already mentioned inconsistency which appears in LIT, namely, 
that of instantaneous response, which leads for instance to parabolic partial 
differential equations implying an infinite velocity for the propagation of 
thermal and viscous disturbances. This fact was first noticed by Grad, (2) who 
further developed the kinetic method devised by Maxwell, considering as 
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independent variables the successive moments of the microscopic distribution 
function. The first 13 moments are indeed the five conserved variables plus 
the fast relaxing dissipative fluxes. The idea was later pursued by 
Cattaneo, ~3) Vernotte, ~4) and others, ~5'6) and equations of the kind of Eq. (1) 
are now known as Maxwell-Cattaneo-Vernotte equations. In 1967 Mfiller ~7) 
proposed that one way of generalizing LIT was to modify the local 
equilibrium assumption by introducing an entropy dependent on both the 
classical variables and dissipative fluxes. This proposal has been taken and 
refined by a large number of workers ~8) and has given rise to the present 
form of EIT. 

The aim of this paper is to clarify firstly, the physical nature of the 
theory, and secondly, some misunderstandings which have arisen with 
respect to EIT. On the one side, it is often true that the microscopic 
approaches of nonequilibrium statistical mechanics do not take account of 
their macroscopic thermodynamic counterpart. Usually neither the entropy 
nor the restrictions imposed by the second law are even mentioned, so that 
one ignores completely whether the results of the different microscopic 
approximations are consistent with well-established results. On the other 
hand, the microscopic theories have been too rigidly tied to the local 
equilibrium hypothesis (LIT) or have been based on heavy mathematical 
artifacts without a sufficient physical interpretation (rational ther- 
modynamics). This has motivated a number of prejudices against EIT both 
from the standard macroscopic and microscopic point of view. 

The plan of the paper is as follows: in the next section we present 
briefly EIT from a macroscopic point of view. In Section 3, a microscopic 
approach is undertaken on the basis of projection operators dynamics. In 
Section 4, a mesoscopic approach is underlined based on the theory of ther- 
modynamic fluctuations. Then, in Section 5 we introduce a general definition 
of non-equilibrium entropy, which in some special cases reduces to the 
standard version of nonequilibrium entropy used in EIT, and which allows to 
generalize the previous results concerning fluctuations. We conclude in 
Section 6 by making some pertinent physical implications of the theory. 

2. EXTENDED IRREVERSIBLE THERMODYNAMICS 

In this section we present a short survey of the macroscopic aspects of 
EIT in hydrodynamic systems. As has already been said, the space of state 
variables, which we shall denote by G, consists of the union of two subsets, 
the subset ~ formed by the conserved local densities (p, u, e), and the subset 

of the the dissipative fluxes, or nonconserved variables (q, z, ~). The 
choice of the dissipative fluxes as additional variables is in a certain way 
obvious, since they appear in the conservation equations describing the 

822/37/3-~-13 
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evolution of the conserved variables. Other nonequilibrium variables could in 
principle be taken, but the use of this set is in many respects more 
convenient than other possible choices. 

The second assumption of EIT is that the entropy density of the system 
is now a function of all variables in G = ~ U ~q~, i.e., (v = p - l ) ,  

S = S(e, v, q, r, ~ ) (2.1) 

The velocity has not been included since we assume that a global uniform 
motion of the system has no effect on its macroscopic properties. The time 
evolution of the entropy density is governed by a generalized Gibbs equation 
(which replaces the local equilibrium assumption of LIT) of the form 

dS de dv dq dr d'~ 
T d~-d t+P~+Val . -d~-+Vao-d-[+v f i2 : - -d~  (2.2) 

where the quantities T, p, ~1, a0, and {~2 have been defined as the 
corresponding partial derivatives of S. Clearly, T and p are generalizations 
of the local equilibrium temperature and pressure in the full G space, but 
here we will neglect the nonequilibrium corrections, which are of second 
order in the nonconserved variables. The quantitives a 1, a 0, and ~2 are 
obtained formally as the most general isotropic tensors of rank one, zero, 
and two, respectively, that one can construct with e, v, and the nonconserved 
variables. Here, we will restrict ourselves to the first order in these variables, 
so that 

~tl = aloq, ao = aoor, fi2 = a2o'r (2.3) 

where [~10, ao0, and a2o depend only on e and v. 
The time evolution equations for e and v are the well-known energy and 

mass conservation equations. In order to obtain the equations that govern the 
time dependence of q, r, and ~ one recasts Eq. (2.2) into the form of an 
entropy balance equation. For this purpose it is necessary to define a 
generalized entropy flux vector J~ which is the most general vector that can 
be constructed from e, v, and the dissipative fluxes. Up to second order in 
the nonconserved variables, one has 

1 
Js = ~ - q  + fl01z'q +/~10 '~ " q + "'" (2.4) 

where fl01 and /~10 are phenomenological coefficients which depend only on 
the slow variables e and v. From Eqs. (2.2), (2.3), (2.4) and the balance 
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equations for e and v one obtains an expression for the entropy production a, 
defined as 

pg + div J~ = a (2.5) 

The entropy production turns out to be given by (9) 

1 a d r ]  
a = r  f l o l d i v q - T - l d i v u + T  - OOdt ] 

- 1 d q  
+ q .  [ g r a d T - ~ + T  a l o ~ + f l o l g r a d r + f l l o d i v ~ ]  

+ ~: - r - ~ ( g r a a  u) '  + T-~a21 ~ -  +fl~o(grad q) '  (2.6) 

where we have assumed that the coefficients ill0 and flol are constant, for the 
sake of simplicity. The extension to nonconstant coefficients is 
straightforward but tedious. 

Equation (2.6) has the structure of a sum of products of the noncon- 
served variables and some expressions which contain the unknown time 
derivatives of the fluxes, among other quantities. Our aim is to obtain 
evolution equations for the time derivatives of the fluxes in terms of the 
variables of G and their spatial derivatives. Indeed, a may be written as 

a = X 0 r  + X1 �9 q + X 2 : ~ (2.7) 
o 

where X0, X1, and X 2 contain, respectively, r, q, and ~. Although one can 
call X0, X1, and X z generalized thermodynamic "forces," the notion of 
fluxes and forces is somewhat lost since both the conserved and noncon- 
served variables have the same status as independent variables. Here we will 
develop the quantities X i in terms of the nonconserved variables up to second 
order: 

Xo=flOlr+flo2 r2 + f l o 3 q  " q +go4 ~ : 

X l  : f lOlq + f l l l r q  +#12q " x (2.8) 

X2 =//-/21 "~ -~-~/22( '~ " ,~)s + #23(q~q)S +g24r~ 

When Eqs. (2.8) are introduced into Eq. (2.7), the restriction a > 0 implies 
that #ol > 0, /i~0 > 0, and/lzl  > 0, and no conclusions can be reached with 
respect to the other phenomenological coefficients gij, because in Eq. (2.8) 
we are omitting higher-order nonlinear terms. The coefficients gzj are 
assumed to be functions of e and v only. 

Taking into account the expressions of the X's and omitting for 
simplicity the nonlinear terms in Eqs. (2.8) we obtain for the evolution 
equations of the fluxes 
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dr T 

dt %0 
[~/ol'r ~- T -1 div u --flol div q] 

dq T 

dt ~1o 
[ltolq+ T-2gradT--flolgradr--floldiV'~] (2.9) 

d t -  

T 

(~21 
[fl21 "~ AV T 1(grad u) s -fl l0(grad q)S] 

In the first-order approximation, in the stationary state, and neglecting the 
space derivatives of the fluxes, Eqs. (2.9) must reduce to the classical 
Navier-Newton and Fourier laws. This implies that /~01 = (~T) -1, ~10 = 
(2T 2) 1, ~21 = (2~/T) -1, with ~, ~/, and ~, being the bulk viscosity, shear 
viscosity, and thermal conductivity, respectively. When the space derivatives 
of the fluxes are neglected, Eqs. (2.9) must reduce to the relaxational 
Maxwell-Cattaneo-Vernotte equations, so that ao0 = -00 /~ ,  al0 = - 0 1 / 2 T ,  
and a21 =-82 /2~  1. In this way we have obtained a physical interpretation of 
the parameters appearing in the generalized Gibbs equation and in the 
constitutive equations. Note that the restrictions of the second law imply, as 
usual, that r/> 0, ~ > 0, and ~ > 0, and the requirement that S must be a 
maximum in equilibrium implies that 01 > 0, 02 > 0, and 0 o > 0. It is also 
worthwhile to stress the validity of reciprocal-like relations in the cross terms 
in Eq. (2.9), related with the coefficients fl01 and ill0. These coefficients have 
an obvious physical meaning, but do not have classical counterparts 
comparable to the usual first-order coefficients. 

It must be emphasized that our restriction to a linear theory is only for 
the sake of avoiding long and cumbersome expressions, but that is not 
essential. Equations (2.9) tell us how the fast variables affect the conserved 
variables in a coupling which in general turns out to be very complicated. 
The relaxation times of these equations depend on the conserved variables 
and the nature of the system, in much the same way as in the theory of 
chemical kinetics. (1~ Also, the  full evolution equations for the fluxes, i.e., 
Eqs. (2.9) plus all the omitted nonlinear terms in Eq. (2.8), have the same 
structure as the time evolution equations for higher moments of the 
distribution function obtained in Grad's method of solution of the Boltzmann 
equation, t2) We remark that when'the relaxation times vanish or one happens 
to be in a nonequilibrium steady state in which the time derivatives of q, v, 
and ~ are zero, the contitutive laws to every order in the gradients of the 
conserved variables are recovered, the local equilibrium assumption holds 
and we restrict to the subspace c~ to describe the state of the system. ~m 
Note, finally, that nonlocal terms implying space derivatives of the fluxes 
could have been included in Eqs. (2.8). These considerations and refinements 
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are omitted in this very simple presentation of the main points of the 
macroscopic development, but will be discussed elsewhere. ~lz) 

3. MICROSCOPIC APPROACHES 

In this section we shall analyze the efforts that have been made to 
derive the phenomenological assumptions of EIT from a more microscopic 
basis. There are essentially two lines of thought, one which is due to Grad tz) 
and is based on the kinetic theoretical method provided by the Boltzmann 
equation for a dilate manotomic gas, and another one due to Nettleton, ~13) 
which is based on the more general kinetic approach set forth by Zwanzig ~14) 
applying projection operator techniques to the Liouville equation. 

Grad's theory is the pioneering work giving a more microscopic basis 
for EIT. Since it was recently discussed at length ~15) we shall content 
ourselves with pointing out only what the main ideas are. Recognizing that 
there are situations in which the state of a system, namely, a fluid, requires 
more information for its description than the one provided by the locally 
conserved densities, the Boltzmann equation is solved by using a method, 
referred to as the 13-moment method, in which the fluxes present in the gas 
are regarded as independent variables in the same way as it is done in the 
phenomenological theory. Thus one is able to describe the nonequilibrium 
state of the gas through a distribution function which depends on the 
conserved densities through a local Maxwellian distribution function and on 
the fast variables (fluxes) which appear in linear combinations with coef- 
ficients which involve the random velocities of the molecules and ther- 
modynamic quantities. The nonconserved variables, i.e., the fluxes, obey 
relaxation-type equations whose relaxation times can be computed for 
specific models of intermolecular potentials. Furthermore the differential 
form for the extended entropy is identical to the one proposed in Section 2 
[see Eq. (2.2)] and the unknown coefficients aio (i = 0, 1, 2,...) can be also 
computed from the molecular models. Thus, just as the Chapmann-Enskog 
method for solving the Boltzmann equation provides for a kinetic theoretical 
justification of LIT, Grad's 13-moment method justifies the EIT. For further 
details about this theory the reader is urged to consult Ref. 15. 

On the other hand, in a rather forgotten paper Nettleton ~13) approached 
the problem of deriving a version of EIT using Zwanzig's projection operator 
technique ~4) to derive exact kinetic equations from Liouville's equation. In 
his original approach, Zwanzig showed how one could recover Onsager's 
symmetry relationships from his general formalism when the set of dynamic 
phase space functions Ai(F ), whose ensemble averages define the 
corresponding set of macroscopic variables {ai}, contains only functions 
which are even with respect to time reversal. In his work Nettleton extends 
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this to include in the set Ai(F ) also functions which are odd with respect to 
time reversal and specifies these functions by ,dj. This implies that the 
corresponding set of observables are the a~'s and the di's. It is that this point 
important to stress that this election lies within the Onsager-Machlup scheme 
of irreversible thermodynamics if one attempts to identify the a's with the 
observables associated to the locally conserved densities and other quasi- 
constants of the motion (the slow variables), and the d's with the fluxes or 
non-conserved variables. The essential assumption introduced by Nettleton 
lies on the fact that whereas the distribution function for the numerical 
values of the even functions is taken to be a microcanonical one in phase 
space, the corresponding one for the odd functions is taken to be a Gaussian 
distribution. 

Without going into any of the details of the derivation which is easily 
reconstructed from the original sources, the equations of motion for 6j = vj 
and for #j = cij are obtained and shown to be non-Markovian with a memory 
effect that constains essentially the exact dynamics of all those variables 
which are not in the set {Aj,Aj}. The following step is to assume that this 
memory effects are either small or negligible in the time scales usually 
encountered in experimental situations and convert those non-Markovian 
equations in Markovian ones. When this is done the equations of motion 
reduce to their canonical form, namely, 

dj = ~.,~ Lj~F*, j = 1,..., n (3,1) 
v = l  

~ ~ T'3)F + T ̀ 4,g78 (3.2) 
= l ~ v J  J +  z....  x " v A ' X  

j = l  X = l  

where 

8S 8S 
r j  = 8aj '  F* = 8d 2 (3.3) 

and S = k in  W(a, d). The function W corresponds to the phase space cell 
determined by the numerical values of {A j} and {_,l j}. Further, it is also 
shown that 

L(3) = _1,!3) r(4) _~(4)  (3.4) 
v j  - - j u  ~ a ~ v A  - -  L ' A v  

which are the Onsager-Casimir reciprocity relations. 
In this way Nettleton provides a microscopic derivation of the full 

Onsager-Machlup version of linear irreversible thermodynamics. Since the 
rapidly varying variables {d} are included one would be tempted to identify 
this work as a microscopic basis for EIT. Indeed, this identification has been 
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made by Keizer ~16) in a recent paper in which he attempts to relate fluc- 
tuating irreversible thermodynamics with the extended theories. Comparison 
of Eqs. (5) and (6) with Eqs. (13) and (14) of Ref. 16 clearly indicates that 
the former ones are just a very particular case of the latter when the memory 
function can be mimicked by an exponential function. However, in neither 
case one can conclude that the phenomenological basis of EIT conceived as 
an enlargement of the space of state variables by adding to it nonconserved 
variables has been explained. Concretely, the Grad scheme carried over in a 
general way by starting with Liouville's equation is still pending. We would 
like to complete this section by pointing out some of the difficulties encoun- 
tered in carring out this program. 

One may begin by considering a set of macroscopic variables {ai(t)} in 
which both conserved (or slow) and nonconserved (or fast) variables are 
included. These variables may be expressed in terms of the Onsager-like 
quantities according to the definition ~ 

aj(t) = f db a ~ b g ( b ,  O) (3.5) 

where aj(t) b is the average value of the "number" associated with a 
measurement of the corresponding dynamic observable Aj(F), weighted with 
the conditional probability P(a, t/b). g(b, 0) is the distribution function of the 
set of numbers {b} associated with measurements of the set {A} at time 
t = 0. The time evolution equation for the a's is shown to be (17) 

dt = ds d a K ( a , s ) g l ( a , t - s  ) (3.6) 

where 

g,(a, t) = f d r  p(r) G(a, t) (3.7) 

and G(a, t ) =  6 ( A ( F ' ) -  a) is the characteristic function for the hypercell in 
phase space at time t. K(a, s) is a rather complicated operator containing the 
full microscopic dynamics of the state variables A whose explicit form will 
not be given here but may be found in Ref. 17 and 18. 

The crucial question is how can one derive a well-established 
phenomenology from these exact but rather complicated expressions. 
Although no completely satisfactory answer is yet available a preliminary 
analysis has shown ~18) that under the following assumptions, namely, (a) that 
a process is slow, (.~i(F) ~ 6 < 1), (b) only those terms which are linear in 
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the a's are extracted from K(a, s) one can transform Eq. (3.6) into a linear 
non-Markovian regression equation, namely, 

)(dtx,t~ _ #| ds M(t) .  ct(t - s) (3.8) 
dt Jo 

where M(t) is precisely the matrix of kinetic coefficients first proposed by 
Zwanzig,(19) 

M(t)= l~ 2 ~im 1 �9 ~- (A(r, t) A(r, 0)) I . C-'(0) (3.9) 

where 

C(0) = (A(F, 0) A(F, 0)) 

and ( ) denotes an equilibrium average. In the Markovian limit one thus 
recovers LIT. In Eq. (3.8) the a's are even and slow variables. In order to 
extract from this formalism the time evolution equations for both slow and 
fast a's one has to find a way of decomposing the function K(a, s) into the 
relevant part for this purpose and one irrelevant. But this analysis has never 
been performed and represents the main difficulty in generalizing the Grad's 
scheme dealing with the Boltzmann equation. 

4. FLUCTUATIONS IN EXTENDED IRREVERSIBLE 
T H E R M O D Y N A M I C S  

Up to now, the explicit expression for the entropy obtained in Section 2 
has not been used. In fact, the entropy is neglected in many approaches of 
nonequilibrium statistical mechanics, which restrict their aim to the analysis 
of the constitutive equations for the fluxes.(Z~ In a macroscopic theory the 
entropy plays an important role because it restricts the possible forms of the 
constitutive equations, owing to the requirement of the second law. 
Furthermore, the entropy contains information on the fluctuations. In 
particular the entropy of EIT which includes the fluxes as independent 
variables, gives information on their fluctuations. This fact is usually 
neglected in microscopic theories and in macroscopic theories as well, where 
the classical entropy is of interest. The second moments of the fluctuations of 
the fluxes and the dissipative coefficients with the relaxation times may also 
be obtained from a macroscopic analysis based on the generalized entropy 
and on an immediate extension of the usual formalism of thermodynamic 
fluctuations. Such an analysis allows to reduce the number of independent 
parameters appearing in the macroscopic theory. Therefore, the interest in 
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fluctuations, both from a theoretical and practical point of view, is more than 
justified and constitutes an important part of EIT. In fact, it provides a 
mesoscopic approach, intermediate between the purely macroscopic on the 
Section 2, and the microscopic one of Section 3. 

The fundamental idea in the analysis of equilibrium fluctuations in EIT 
is to use the second differential of the generalized entropy as a potential for 
the fluctuations of the variables in G space. In this way, one assumes that the 
probability of fluctuations is given by the Einstein-Smoluchowsky formula 

W ~ exp(AS/kB) (4.1) 

This method has been discussed in detail (2~) and will not be pursued at 
length here, where we will restrict ourselves to a brief description of the main 
assumptions and results. In the fluctuations near the equilibrium state of an 
isolated system, AS may be developed up to second order as AS = (6S) eq + 
l (62s)eq  where (68)  eq = 0 and (t~2S) eq ~ 0, because the entropy is maximum 
in equilibrium. Here, we will use for S the generalized entropy of EIT, 
obtained in Section 2. In this approximation we have, therefore, the following 
Gaussian probability distribution function: 

W(6e, 6v, 6q, &, 6 ~ ) 

I 1 [c92S (3ZS 2 ~2S 
exp ~ [--~--e2 (6e) 2 + ~ ( 6 v )  2+  ~ 6 e 6 v  

O'v 6q ~ O~ 02v ]I  
,tr~ �9 o q - ~ - ( & )  ~- 2 - - ~  : ~  (4.2) 

Note that the parameters O~v/2T 2, Oov/~T , and 02v/2tlT are considered to 
remain constant during the fluctuation, since the relaxation time of the 
conserved variables is much longer than that of the fast variables, so that it 
is reasonable to assume that their fluctuations are uncorrelated. The second 
moments are easily obtained from Eq. (4.2). While for the conserved 
variables the results are the classical ones, for the fast variables we obtain 

kB)~T2 5ij 
(Sqi c~qj} -= 01 v 

Oov 

o o k B tlT Aukl 
( & U & k ' }  = G----V-- 

(4.3) 
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with 

Equation (4.3) relates the coefficients ~, and 01, ~ and 00, through the 
second moments of the fluctuations of the respective fluxes near equilibrium. 
In fact Eqs. (4.3) are a particular case of the Green-Kubo relations for the 
exponential decay of fluctuations of the fluxes as implied by the Maxwell- 
Cattaneo-Vernotte equations, tEE) 

In the present approach Eqs. (4.3) have the consequence of reducing the 
number of independent parameters. In this way, while in the macroscopic 
formalism of Eq. (2.9) there are eight independent parameters (00, 01, 02, ~, 
2, t/, fl01, fllO), in the mesoscopic level of the theory of fluctuations there are 
only five independent parameters (Oo,01,02,flo~,flio). In a purely 
microscopic theory, there would not be any independent parameters, because 
all of them are expressed as functions of the given interparticle potential. 
However, the microscopic description is explicitly feasible only in some 
simple cases, so that the intermediate level of fluctuations often constitutes a 
good approximation for practical purposes. 

If the decay of fluctuations is described by the Maxwell-Cattaneo laws, 
one obtains for the two-time correlation function of the fluxes (21) 

k~2T 2 
(~qi(t)~qJ( t + t ' ) )=  01 v ~iJ exp(-It']/O1) 

(6r(t) 6r(t + t')) = kB~T Oo v exp(--lt' 1/00) (4.4) 

(6f  i~(t) 6~ kt(t + t')) -- k~rlT 02 v AiJ klexp(-It'l/02) 

Clearly, in the limit of vanishing relaxation times 0i, these correlations 
reduce to the classical results of Landau-Lifshitz (23) and Fox-Uhlenbeck, ~24) 
for the hydrodynamic stochastic noise. Note, however, that in EIT the fluc- 
tuations of the fluxes have a very clear physical meaning, while in stochastic 
hydrodynamics the noise is a mathematical expression of the uncertainly 
which hopefully one should be able to obtain from the contraction in the 
description of a molecular system. 

Equations (4.4) imply that the hydrodynamic noise is not white, but 
colored, since it has an exponential memory related with the relaxation 
times. It should also be stressed that the spatial behavior of the correlations 
of the fast variables has been ignored, or rather, it has been implicitly 
assumed that their fluctuations are 6-correlated in space. This is reasonable if 
the system is away from a critical point. 
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Another advantage of this formulation of fluctuations is that it allows 
for computation of the correlation of the fluxes associated with nonconserved 
variables for which the Landau-Lifshitz scheme is no longer applicable. (24~ 
Such are the cases of chemical reactions, (24'25) magnetic fluids, polarizable 
media, and others. 

Let us mention finally that the present formalism has also been 
confirmed from a different point of view based on the Onsager-Machlup 
approach (5) to the probability of paths in phase space. ~26) For a survey of 
additional work in the field of equilibrium and nonequilibrium fluctuations of 
dissipative fluxes, the reader may consult Ref. 27. 

5. M E M O R Y  F U N C T I O N S  A N D  G E N E R A L I Z E D  E N T R O P Y  

The results for the fluctuations obtained in Section 4 are limited to a 
particular kind of dynamics, namely, exponential dynamics implied by the 
Maxwell-Cattaneo equations. From this point of view, the results (4.3) do 
not share the generality of the corresponding expressions for the second 
moments of the fluctuations of the classical, conserved variables. This is not 
surprising, of course, since the dynamical processes allow for a much wider 
variety of phenomena than that implied by the equilibrium features. When 
dealing with such an amazing variety two main possibilities arise: the use of 
specific, concrete, clear models and the resource to general, but abstract and 
formal expressions. The analysis of the previous sections has been based on 
a specific model. The aim of this section is, in contrast, to show how more 
general, but more formal results may be obtained within the framework 
of EIT. 

In Section 2 we were able to identify explicitly the coefficients 
appearing in the generalized Gibbs equation defining a generalized entropy. 
In Section 3, it was mentioned that the same result may be obtained from 
kinetic theory. Then in Section 4, such an identification of the nonclassical 
coefficients has been shown to be fully consistent with the theory of fluc- 
tuations. So many, exact coincidences do clearly reinforce the role and 
credibility of such a generalized entropy. Our purpose here is to provide yet 
another example of the use of the generalized entropy concept from a general 
macroscopic point of view. 

In the classical equilibrium theory, the entropy of a state B is defined 
by means of the relation 

B 1 S(B)=S(A)+~ ~ -  arQ r ev (5.1) 

where A is a reference state, T the absolute temperature, and dQrev the heat 
exchanged by the system with its surroundings in an idealized reversible 
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process. Perhaps one of the clearest and most direct definitions of the 
entropy of a nonequilibrium state is the following one: 

f 
B ( t = o o )  

S(B) = S(A) + -a(t=o) a dVdt (5.2) 

Here, A is the initial nonequilibrium state whose entropy we want to define. 
The system is suddenly isolated at t = 0 and is allowed to relax to the 
corresponding equilibrium state B at t = m. Since the relaxation is adiabatic, 
there is no entropy flow between the system and its surroundings, and the 
only difference between the well-known equilibrium entropy of the 
equilibrium state B and the unknown entropy of the initial nonequilibrium 
state A due to the entropy production integrated along the relaxation 
adiabatic path. 

In this way definitions (5.1) and (5.2) are complementary and in fact, 
particular cases of the well-known inequality 

> s(a)  + T (5.3) 

where dQ is the actual heat flow and T the temperature at which the 
exchange is performed. This inequality can be rewritten as an equality 
through the introduction of the noncompensated heat Clausius dQ': 

~ dQ ~" dQ' (5.3b) S(B) = S(A) + - T - +  7 ~ 

In the absence of heat flow, the second term of the right-hand side drops out 
and Eq. (5.3b) becomes identical with Eq. (5.2). On the other hand, when the 
process is reversible so that the irreversible entropy production (or noncom- 
pensated heat) vanishes, the entropy change is due exclusively to the flow 
across the boundaries of the system and Eq. (5.3b) reduces to Eq. (5.1). 
Furthermore, all the states involved in Eq. (5.1) are equilibrium states, while 
Eq. (5.2) involves a time integral over a dynamical (i.e., nonstatics) process 
along nonequilibrium states traversed by the system during its adiabatic 
relaxation. 

Let us now take the following expression for a: 

q2 ~ :~ r2 
a =-~--TS- + 2 ~ -  + 2~T 

(5.4) 
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When Eq. (5.4) is introduced into Eq. (5.2) we find 

S(e, v, o, o, o) = S(e, v, q, z(0), { (0)) 

j 

Note that since the system is isolated during the relaxation, e and v remain 
constant, so that the final equilibrium state reached from the initial none- 
quilibrium state characterized by (e, v,q(0), r(0), ~(0)) will be precisely 
(e, v, o, o, 6). If in addition one assumes that the evolution of the fluxes is 
described by the Maxwell-Cattaneo equations, then q( t )=  q(0)exp(--t/01), 
~ ( t )=  ~(0)exp(-t/O:), etc. and when this is substituted into Eq. (5.5), it 
leads directly to 

01v q2 O~ r 2 Ozv ~: '~ (5.6) 
S(e, v, q, v, ~ ) = S eq 22T2 2 ~  2r/T 

in complete agreement with the results of Section 2. 
This derivation of the generalized entropy consolidates the meaning of 

such a nonclassical quantity, and suggests some ways of generalizing it to 
other physical situations. Here, we will deal with the linear expression for the 
entropy production: 

a=--T-2gradT.q--T-l~divu--T-l"~ : (grad u) s (5.7) 

Introducing this expression into Eq. (5.2) we obtain 

S(e, v, q, r, ~) = seq(e, v) + vT- '~o grad T(t). q(t)dt 

+ v T - l f o  r(t) divu(t)dt + v T - l f ?  ~(t):  (grac] u(t))sdt 

(5.8) 

In the memory function approach the instantaneous constitutive equations 
are substituted by the more general expressions 

q(t) = - f l  2(t - t ') grad T(t') clt' 

r(t) = --~i ~(t -- t ') div u(t') dt' (5.9) 

(t) -- - ~i 2r/(t -- t ')[(grad u(t')) s ] dt' 
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In the case when ~,(t - t) = 2O(t - t '), r - t ' )  = r - t ' )  and r/(t -- t ' )  = 
q 6 ( t - t ' ) ,  Eqs. (5.9) reduce to the classical Fourier and Navier-Newton 
constitutive equations, and if the memories are exponential in time we 
recover the Maxwell-Cattaneo equations. The memory functions incorporate 
all the rapid and very complicated processes that occur in the system as a 
consequence of the initial perturbation. 

It is not our purpose here to work out explicitly the corresponding form 
of the entropy. Rather, our aim is to use the theory of thermodynamic fluc- 
tuations in order to obtain from Eq. (5.8) some information concerning the 
memory functions and their relation with the fluctuations of the fluxes. 

Recall that according to the classical theory of thermodynamic 
fluctuations, (zS) when d S  = ~ i X i d Y i ,  X~ being the natural variable of the 
entropy and Yi its respective thermodynamic conjugate, the second moments 
of the fluctuations of X i near equilibrium, are given by 

<ax, axj> = - k .  (exit (5.1o) 
\ ~ Y i /  r' 

In our case, expression (5.8) for the entropy shows clearly that the ther- 
modynamic conjugate variables corresponding to q(t'), r(t '), and r (t ') are, 
respectively, v T - 2 V ( T ( t ' ) ) ,  v T - 1 V  �9 u(t'), v T - l ( V u ( t ' ) ~ ) .  We have, therefore, 

kn T 2 c~q(t) 
(~q(t) bq(t ')) = avi '(t ' )  

(&(t) & ( r ) )  - k. T  r(t) (5.11) 
v 9d ivu ( t ' )  

(5~ ( t) .  6~ (t ')) = k B T ~ ( t )  
v cg(grad u(t ')) s 

Taking into account the constitutive equations (5.9) we finally obtain 

(6qi(t)  5qj( t ' )}  k8 T2 = 2ij(t - t ' )  
t) 

(Oz(t) 6v(t')) = k B T  r - t ' )  (5.12) 
/) 

(6~ i~(t) 5~ t ( t , )  ) = k~ T A~ik, q(t  _ t ' )  
v 

These expressions generalize the previous ones, Eqs. (4.4) which were 
restricted to the exponential dynamics of the fluxes. Finally, if the memory is 
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short enough so that the slow parameters VT, Vu, and (Vu) s may be 
considered as constant during the relaxation of the fast variables, Eqs. (5.9) 
become greatly simplified and give 

q ( t ) = - ( f o 2 ( t ' ) d t  ') . grad T(t) 

r ( t ) = - -  (~? ~(t')dt') divu(t) (5.13) 

~(t)=- (fo2q(t')dt') (grad u(t))s 

Since the decay of the memory function is very fast, we may extend the 
integration in time up to infinity without any appreciable effect on the 
integral. From Eqs. (5.13) and (5.12) one obtains 

2~j-  v ~o k~ T 2 (~q,(0) aqi(t)) dt 

~ = (&(O) &(t)) dt (5.14) 

V oo 

tl Aijk' = ~ T  fo (&ij(0) 6rkz(t)) dt 

These are indeed the well-known Green-Kubo formulas for the 
dissipative coefficients. We have shown, therefore, that the formalism of EIT 
is not restricted to the exponential model, but it has a generality comparable 
at least with linear response theory. Such a generalization may be obtained 
at the price of a more formal, but less evident development. 

6. DISCUSSION 

A number of misunderstandings have arisen with respect to the meaning 
and nature of EIT. In this last section we proceed to discuss some of them 
appeared in the recent literature. 

Recently Keizer (16) has examined in some detail the process of 
contraction of variables, resulting in the elimination of the fast variables, i.e., 
the dissipative fluxes, in the particular case when the fluxes are the time 
derivatives (d) of the conserved variables (a). This restrictive assumption is 
the basis of Onsager's method for the deduction of reciprocal relations and 
of many other valuable features of linear nonequilibrium thermodynamics. It 
must be stressed, however, that in many cases, for instance in 
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hydrodynamics, the dissipative fluxes are not in general the time derivatives 
of the conserved variables. They may be interpreted in this way in some 
particular circumstances, which generally suffice to state the symmetry of the 
thermal conductivity or the diffusion matrix or the electrical conductivity, 
but this is only a useful simplification of no general validity. ~29) 

The conclusions of Keizer's particular analysis have been used as 
unfounded criticisms toward the use of the fluxes as independent variables by 
arguing that in practice the same results are obtained with a memory 
function formalism. Indeed, as we have shown in Section 3 this is far from 
being the case. The memory function formalism hardly leads to equations 
such as Eq. (6) in Ref. 16 for the macroscopic variables. In fact this is an 
artificial memory function equation arising from the ordinary solution of an 
inhomogeneous linear differential equation in which the term n(0) is inter- 
preted as a statistical distribution. From there on use is made of the general 
formalism of stochastic processes to achieve some results on the properties 
of the "fluctuating force" appearing in the Langevin-type equation obeyed by 
the a's. It is even argued in the proof that the correlation matrix of a(0) 
involving an average over conditional probability densities is connected with 
Zwanzig's equation for M(t) [see Eq. (3.9)]. This is clearly incorrect since 
the latter one contains the ensemble average of the time rate of change of the 
phase space functions associated with the observables of the system and not 
a conditional average over the time rate of change of the macroscopic 
(stochastic) variables. Thus, the validity of Eq. (20) in Ref. 13 is strongly 
questioned. 

On the other hand, the formalism of EIT includes information on the 
stochastic noise due to the independence of the fluxes. The fact that upon a 
contraction of these fast variables one is lead to some very particular cases 
of a memory function approach reinforces rather than invalidates the 
extended theory. 

It could be argued that EIT is limited to an exponential memory 
function. As we have seen in Section 5, this is not true, because EIT is able 
to deal with more general dynamics. In fact, the memory function, according 
to relations (5.12), very well known in statistical mechanics, is related to the 
dynamics of the fluxes in a very direct way. Moreover, since the memory 
function is so intimately related to the time correlation of the fluxes, it must 
obey the same equations that describe the evolution of the fluctuations of the 
fluxes around equilibrium. Therefore the evolution equations of the fluxes 
may provide a sounder and more physical basis for the analysis of the 
memory functions. In this respect such a basis seems preferable, very 
directly related with a dynamical physical process, than the purely 
mathematical game of inventing fanciful memories. Even in the case of 
having a very useful memory, one should try to explain its meaning and 
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success instead of taking for granted the process of physical understanding 
as a mere mathematical fitting of data. 

"Finally, Keizer's analysis only deals explicitly with the case where the 
relaxation times of the fast variables are much shorter than the time scale in 
which the conserved variables change. There are systems, however, (e.g., 
polymer solutions), where both time scales may become comparable and for 
their description the use of EIT is crucial. Also, when making the connection 
between his version of EIT--i.e.,  the one in which the fluxes are the time 
derivatives of the conserved variables--and fluctuating hydrodynamics (cf. 
Section 2 of Ref. 16), there is no reference to the generalized entropy and this 
is, of course, surprising since the entropy plays an important role in EIT as 
in any other phenomenological theory. Thus neglect of the entropy implies 
that, in order to find an expression for the second moments of the noise, 
Keizer has to return to the use of a microscopic theory. EIT, on the 
contrary, gives very directly such an information. The general interest of this 
particular point is that EIT is not strictly equivalent to the memory function 
approach, but it contains some further information which concerns the 
mathematical (approximated) properties and the physical meaning of the 
stochastic noise appearing in that formalism. In summary, EIT at its three 
levels of description: macroscopic (thermodynamic), mesoscopic (fluc- 
tuations), and microscopic (kinetic theory, projection operators), contains a 
richer description of the physical macroscopic systems than that provided by 
the usual theories, based only on the conserved variables as independent 
variables. This statement seems true even in the case when the classical 
description is formulated in terms of memory functions. 
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